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Summary-Considerable progress was made in developing artificial neural netwark methods
for solving stochastic sequential Aecision problems. Our research focused on reinforcement
learning methods based on approximating dynamic programming (DP). We used problems
in the domains of robot fine motion control, navigation, and steering control in arder to
develop and test learning algorithms and architectures. Although most of these problems
were simulated, we also began to apply DP-based learning algorithms to actual robnt control
problems with considerable success. Progress was made on reinforcement learning methods
using continuous actions, modular network architectures, and architectures using abstract
actions. Theoretical progress was mrade in relating DP-based reinforcement learning algo-
rithms to more conventional methods for solving stochastic sequential decision problems. As
a result of this research, we have a much improved understanding of these algorithms and
how they can be successfully used in applications.

1 Introduction

Following is the summary of the research proposal that led to funding of the research
being reported here. It states the research objectives.

This project seeks to develop learning methods for artificial neural networks
(or connectionist networks) for application to problems formalized as stochas-
tic sequential decision problems. In these problems the consequences of network
actinns unfold over an extended time period after an action is taken, s that
actions must be selected on the basis of both their short-term and long-term
consequences and under uncertainty. Problems of this kind can be viewed as
discrete-time stochastic control problems. The theory of stochastic sequential
decision making and the computational techniques associated with it, known as
stochastic dynamic programming, provide ways of understanding the capabih-
ties of the reinforcement-learning and temporal credit-assignment methods we
previously developed and suggest a variety of extensions to them which can be
implemented as adaptive networks. These extensions involve model-based and
hierarchical learning. The long-term goal of this research is the development
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of network methods for the efficient solution of stochastic sequential decisiin
problems in the absence of complete knowledge of underlving dvnamies

We made considerable progress in furthering the development of DP-based reinforeement
learning algnrithms and in understanding their properties and domains of utility. Below we
describe nur major accomplishments. Some aspects of this project were closely related 1o
research funded under National Science Foundation Grant EC'S-8912623.

2 Reinforcement Learning of Continuous Values

Part of our rescarch addicssed methods for allowing networks with continuous eutputs to
learn via reinforcement learning. Although this work did not explicitly rely on the formalism
of sequential decision problems. it addressed a capability that learning systems must have for
a wide range of such problems. Whereas most reinforcement learning systems are restricted to
a finite set of actions, many sequential decision problems require learning over a continucus
range of actions. Qur effort focused on Stochastic Real-Valued (SRV) units, which are
neuron-like units with real-valued outputs that can be trained via reinforcement feedback.
SRV units were developed by V. Gullapalli with support from this grant and formed the
basis of his Ph.D. dissertation (he received the Ph.D. in 1992). We conducted a number of
experiments using SRV units in a simulated pole-balancing task and control of a simulated
three degree-of-freedom robot arm in an underconstrained positioning task. Results indicated
that networks using SRV units can learn these tasks faster than networks based on supervised
learning. Gullapalli has published a journal article, several conference papers, and a baok
chapter on this work.

Gullapalli also used SRV units in a neural network model of perception by training
a network with SRV units to model area 7a of the posterior parietal cortex. a cortical
area thought to transform visual stimul from retinotopic coordinates into a head-centered
coordinate system {5, Results showed that the SRV network reproduces the performance
of previous models while being free of some of their imitations with respect to biological
plausibility.

Based on the promise shown by these simulations, we applied a network using SRV
units to the problem of robot peg in-hole insertion using a robot arm (a Zebra Zero). \We
achieved very promising results. described in refs. |7; 6]. This task is important in industrial
robotics and is widely used by roboticists for testing approaches to robot control. Real-world
conditions of uncertainty and noise can substantially degrade the performance of traditional
control methods. Sources of uncertainty and noise include (1) errors and noise in sensations.
(2) errors in execution of motion commands. and (3) uncertainty due to movement of the
part grasped by the robot. Under such conditions, traditional methods do not perform very
well, and the peg-insertion problem becomes a good candidate for adaptive methods. For
evample n the robot we used there is a large discrepancy between the sensed and actual
positions of the peg under an external load similar to what can occur during peg insertion:
whereas the actual change in the peg’s position under the external load was on the order of




2 to 3mm, the largest sensed change in position was less than 0.025mm. In comparison, the
clearance between the peg and the hole was (1.175mm.

Although it 1s difficult to design a controller that can robustly perform peg insertinns
despite the large uncertainty in sensory input. our results indicate that direct reinfoccement
learning can be used to learn a reactive control strategy that works robustly even in the
presence of such a high degree of uncertainty. In a 2D version of the task (basically. inserting
a peg into a narrow slot) the controller was consistently able to perform successful insertinns
within 100 time steps after about 150 learning trials. Furthermore. performance as measured
by insertion time continued to improve, decreasing continuously over learning trials. The
controller became progressively more skidliful at peg insertion with training. Similar results
were obtained in a 3D task although learning took somewhat more trials.

Our experiences with this problem helped develop the following perspective nn an im-
portant issue in control. The issue is when to approach a difficult control problem by first
attempting to construct an accurate model of the system being controlled. versus when to
attempt to solve the problem directly, i.e., without such a model. We argue that for some
problems constructing an adequate model is actually more difficult than solving the prob-
lem itself. In robotics, it is a model of the task, e.g.. a manipulation task, that is often
problematic, not a model of the robot itself. Adaptive control methods appealing directly to
the demands of the real task instead of to a model of the task can be very effective in such
problems.

3 Navigation and Steering Control

Navigation and steering control problems provide useful test beds for exploring reinforce-
ment learning algorithms for sequential decision problems. The basic form of these problems
is that some kind of “vehicle” must move to a goal region of its environment while avoiding
obstacles. Learning is used to improve the vehicle’'s performance with successive trials in
terms of the distance traveled, the time required to reach the goal region, or other criteria.
We have restricted attention to problems in which the environment is static in that it does
not contain moving obstacles or other vehicles. By learning to navigate we mean learning
the direction the vehicle should move from each location in order to reach the goal region
along successively better paths. By learning to “steer,” on the other hand, we mean learning
tc. ~entrol a dynamic vehicle (for example, a vehicle that has mass and inertia), so that it
reaches the goal region via successively more efficient trajectories. Often we are only inter-
ested in reaching the goal region in the minimum amount of time. Navigation and steering
control also apply to more abstract spaces, such as the configuration space of a robot ma-
nipulator, instead of two- or three-dimensional cartesian space. Manv different verzions «f
these problems exist dcpending on ithe sensory and motor capabilities of the vehicle and on
the structure of the underlying space.

Although navigation and steering control have obvious practical applications, we have
used abstract versions of these problems as tools for helping us understand and refine DP-
based reinforcement learning algorithms. However, our work 1s relevant to realistic examples




of these problems, and some of our recent research. as well as research in other gronps.
experirnents with these methods in actual navigation and steering contrel preblems

3.1 Navigation

We developed a navigation test-bed simulating the movement of a cvlindrical rohaot with a
sonar belt in a planar environment. This test-bed was first used to study short-range homing
in the presence of nbhstacles, that is. going to a “home” place from an arbitrary starting place
within a neighborhood of the home place. The simulated robot has 16 distance sensars and
6 grey-scale sensors evenly placed around its perimeter. Thus. the input to the learning
system at any time is a “sensation” vector of 32 real numbers representing its current view
of the environment. (Other versions of this test-bed used fewer simulated sensors). This
contrasts with various “grid-world” navigation problems that we have studied in the past.
and that other groups are studying, in which the robot moves from square to square in a
discretized environment.

This test-bed was used to illustrate the behavior of several DP-based learning architec-
tures. One architecture was developed by J. Bachrach i1: 2. It takes a structured approach to
the problem and utilizes a priori knowledge of how local changes in position tend to change
the robot’s view. The homing aspect of the task and the obstacle avoidance aspect are
handled by separate modules, implemented as “adaptive critics” that improve “evaluation
landscapes” with experience. An evaluation landscape in this case is a real-valued function
of the space of possible sensations; the higher the value of a sensation. the more the rohnt
desires to be there. One critic learns to produce a gradually sloping evaluation landscape
with a maximum at the home place. The other critic learns to place evaluation minima
around obstacles. Gradient descent in the evaluation landscape formed by the superposition
of the landscapes implemented by the two critics produces a trajectory that both avoids
obstacles and moves towards home. This is related to the technique of potential functions,
but differs in that it is perceptually-based and involves learning. That is, the evaluatinn
landscape, which is improved through experience, only evaluates sensations directly; it does
not directly evaluate places in space. Places indirectly receive evaluation according to the
sensations that the robot would receive if it moved to them. Thus, the robot does not have
to maintain a “bird’s eye” view of the environment. This navigation control architecture
is described in Bachrach’s Ph.D. dissertation, completed in 1991. This work was our first
experience with using reinforcement learning in a control scheme that is “behavior-based”
in the sense of coordinating several different behaviors (homing and obstacle avoidance).

This test-bed was also used to illustrate a modular learning architecture develnped by
S. Sinzh 711’ that leains several different homing/obstacle avoidance tasks in the same envi-
ronment. This is discussed below in the sectinn nn mardlar architectures




3.2 Steering Control

To study steering control, we adpoted the “race track problem ™ where a starfing line
and a finish line are given in a two-dimensional workspace. along with two curves connecting
corresponding edges of the starting and finish lines. The two curves represent the two side
walls of the race track. and the region enclosed by the walls and the starting and fimsh hnes
is the admissible region of the workspace. As a “vehicle” we basicallv use a unit mass with
no damping and stiffness. The controller applies bounded forces at discrete time ntervals
on the mass. The objective is to push it from the starting line to the finish line in minimum
time without hitting the walls. Hitting a wall at any point is considered as controller failure
There are no constraints on the velocity at the finish line. so that anyv crossing »f the finish
line is regarded as success. The difficulty of this problem can be adjusted by the selection
of the race track size and shape. the bound on controller forces, and the mass of the vehicle.
The problem can be made stochastic in a variety of ways.

We began with a version of the race track problem having a continuous state space
The vehicle could occupy a continuum of places and move at an arbitrary velocity., On
a simple example of the racetrack problem (turning a single retangular corner). our DP-
based learning scheme using radial basis functions was able to produce successively faster
times to the finish line by learning to take the corner at increasingly better trajectories. but
learning was very slow. Qur research therefore went in two directions: 1) We used a finite-
state racetrack problem to compare our DP-based learning algorithms with the conventional
solution method (conventional DP). This version of the problem satisfies the conditions
required for a convergence theorem we proved. {3]. 2) This problem cries out strongly for the
application of a modular architecture in which different modules are switched in for different
track configurations. This motivated the study of extending the modular architecture Jacobs
i8: 9! to apply to this and similar problems. described below.

4 Modular Architectures

Work on a modular network architecture was begun under the previous AFOSR grant.
This work was completed in the period being reported and formed the basis of the Ph.D.
dissertation of R. A. Jacobs. This is a method for improving the learning ability of arti-
ficial neural networks by organizing several networks into a modular structure [8; 9]. One
advantage of such a structure is that the individual networks are not faced with solving large
problems in their entirety. Large problems are solved by the combined efforts of several
networks. The learning method is a generalization of the unsupervised learning method «of
cnmpetitive learning to the supervised case. After Jacobs was awarded the Ph.D. in May
1990, he worked as a post doctoral researcher at MIT under the direction of Michael Jordan
befrre taking his current position as Assistant Professor of Psychology at the University
of Rochester. This work has been very influential in the neural network community, and
current work of Jacobs and Jordan continues to develop this basic idea with considerable
success.

(1]




Whereas Jacobs' architecture is for supervised learning, our own research with madular
architectures extended Jacobs' ideas tn a modular architectnre for reinfarcement learning
The ideas was to develop a learning architecture which would facilitate transfer of learn-
ing among multiple sequential decision tasks. This is important because sophisticated au-
tonomous agents will have to learn to solve many different tasks. not just ene: theyv should
learn throughout their “lives.” While achieving transfer of learning acrrss an arbitrary et
of tasks is ditficult. or even imipossible, there are useful and general classes ~f tasks where
such transfer is achievable. We focused on extending DP-based reinforcement learning al-
gorithms to compositionally structured sets of sequential decision tasks. Specificallv. we
studied learning agents that have to learn to solve a set of sequential decision tasks. where
the more complex tasks. called composite tasks. are formed by temporally concatenating sev-
eral simpler, or elemental, tasks. Learning occurred under the assumption that a compasite
task’s decomposition into a sequence of elemental tasks was unknown to the learning agent.

Our architecture, called CQ-L. performs compositional Q-learning, where Q-learning is
a DP-based reinforcement learning method proposed by Watkins (15; 16", It is a kind of
Monte Carlo DP method for estimating the value of performing various actions when the
environment is in various states. These values are stored in a function called the Q-function
of the task. CQ-L consists of several Q-learning modules, a gating module, and a bias
module. In different simulations these modules were variously implemented as lookup tables
or as radial basis networks. When trained on a set of compositionally-structured sequential
decision tasks. CQ-L is able to do the following: 1) learn the Q-functions of the elemental
tasks in separate Q-learning modules; 2) determines the decomposition of the compnsite
tasks in terms of the elemental tasks; 3) learns to construct the Q-functions of the composite
tasks by temporally concatenating the Q-functions of the elemental tasks; and 4) learns the
constant biases that are added to the Q-value functions of the elemental tasks to construct
the Q-value function of the composite tasks.

Simulations using the navigation testbed described above showed that CQ-L is able to
learn tasks complex enough to evade solution via a conventional DP-based learning architec-
ture. C'Q-L is more powerful than the corventional architecture because it uses solutions of
the elemental tasks as building blocks for solving the composite tasks. Transfer of learning is
achieved by sharing the elemental task solutions across several composite tasks. This is work
of S. P. Singh, a research assistant who has been funded by this grant. Singh has published
several papers on his work [14; 12; 13] and is expected to complete the Ph.D. degree in
the summmer of 1993. Singh’s work has already been influential in the Al Machine Learning
research community, where increasing attention is being devoted to DP-based reinforcement
learning as a component of intelligent agents.

5 Abstract Actions

("losely related to our work with modular architectures is our study DP-based learning
with abstract actions. Most applications of DP-based learning described in the literature
nse these methods at a very low level. For example, the learning component’s actinns may




be primitive movements in a navigation problem. This low level of abstraction generally
produces very difficult tasks that can be learned only very slowly. Part oof coir recenrch
eflort has been directed toward raising the level of abstraction at which DP-based lrarning
algorithms are applied. One way to do this is by letting the learning component’s actions be
control signals to other system components instead of low-level overt actions in the svstem's
environment. This is one way to incorporate prior knowledge into a learning svstem in order
to improve its performance. and it addresses the problem of having the svstem perform
acceptably while it is learning: If a learning svstem is to learn froun its failures. how can
one prevent these failures from producing inconvenient. expensive, or catastrophic results”
This issue, perhaps mecre than any other. has imited the utility of DP-based reinforcement
learning in many real-world applications. One answer is to use reinforcement learning as a
component of a more complex system.

We experimented with a kind of “bahavior based™ reinforcement learning in which the
learning component’s task is to learn how to coordinate a repertoire of behaviors that have
been hand-crafted to 1) achieve desired goals, and 2) avoid catastrophic failure. Learning
the right way to compose these behaviors in a state-dependent manner can improve the
svstem's behavior toward optimality while it is operating adequately. We are currently
applving these ideas to the navigation domain. The abstract actions correspond 1o twa
navigation functions that are computed by using the harmonic function apprrach to path-
planning recently developed by Connolly and Grupen. colleagues doing robotics research at
the University of Massachusetts.

In harmonic function path planning, navigation functions are obtained as solutions »f
Laplace’s equation (an elliptic partial differential equation) over the relevant robot configu-
ralion space. A navigation function is a function with the property that a robot failowing
its gradient from any point in space is guaranteed to reach the goal configuration while
avoiding all obstacles. Different boundary conditions of Laplace’s equation produce differ-
ent navigation functions. One such function {obtained using Dirichlet boundary conditions)
tends to repel the robot directly away from obstacles while attracting it to the gnal. Anaother
navigation (obtained using Neumann boundary conditions) tends make the robot “hug” the
obstacle boundaries while attracting it to the goal.

We experimented with using DP-based learning to adjust how these functions were com-
bined to produce another navigation function enabling the robot to reach the goal much faster
than it could using either function alone. This can be done in such a way that throughout
repeated learning trials, the robot always reaches its goal and never hits an obstacle. Thus
learning can occur on-line while the robot 1s actually performing its designated task with-
out risking inadequate performance. Reinforcement learning is used for perfecting skilled
performance. not for achieving adequate performance. We think that reinforcement learning
will be most useful in this capacity. We produced successful demonstratinns of these ideas
it simulated environments, and we are currently applyving them to an actual GE P-50 robot
arm




6 Theory

We have made considerable progress in increasing our theoretical understanding DP-
hased reinforcement learning methods and how they relate to other methods. We wrote an
extensive paper (3], still under review for Artificial Intelligence Journal). that relates thes:
learning algorithms to the theory of asynchronous DP "4 and to the heuristic search methid
called Learning Real-Time A* /10!, This resulted in a convergence theorem for a class «f
DP-based algorithms and clearly articulates the advantages they offer over conventional
methods for some types of problems. We have also begun development of theory in which
some versions of DP-based learning algorithms can be derived as Robbins-Manro tvpes of
stochastic approximation methods for solving the Bellman optimality equation. We are
currently studying the stochastic approximation literature to derive asymptotic convergence
results as well as rate of convergence results.

7 Conclusion

The period covered by this grant has seen a remarkable increase in the number of re-
searchers studyving DP-based reinforcement learning. This is due in part to increased interest
in the study of embedded autonomous agents. Learning is being widely recognized as an
essential capabability of such agents. and DP-based reinforcement learning is directly ap-
phicable to the kinds of problems such agents face. Our research funded by this and other
grants. as well as the research conducted at other laboratories, is quickly moving these
methods toward becoming standard tocls that can be successfully applied to a wide range
of problems. While the theory of these algorithms is still underdeveloped, we now have a
much clearer idea of how they are related to more traditional methods of decision theory
and control. We are convinced that DP-based reinforcement learning, in all of its varieties,
1s a collection of novel algorithms that will find increasing use in forming useful approxmate
solutions to stochastic sequential decision problems of practical importance.
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using real-time dyvnamic programming. Proceedings of the Seventh Yale Vorkshop
on Adaptive and Learning Systems, New Haven. CT, May 1992.
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V. Gullapalli. Robust control under extreme uncertainty. In Neural Information
Processing Systems 5, Morgan Kaufmann: San Mateo, CA, to appear.

S. J. Bradtke. Reinforcement learning applied to linear quadratic regulation. In
Neural Information Processing Systems 5, Morgan Kaufmann: San Mateo, CA,
to appear.

Book chapters published

A. (5. Barto and S. P. Singh. Reinforcement learning and dynamic programming. In
Proceedings of the Sizth Yale WWorkshop on Adaptive and Learniiig Systems. held
August 15-17. 1990 in New Haven, CT.

A. (. Barto and S. P. Singh. On the computational economics of reinforcement
tearning. In D.S. Touretzky, J.L. Elman, T.J. Sejnowski and G.E. Hinten, editors,
Proceedings of the 1990 Connectionist Models Summer School. San Maten, ('A:
Morgan Kaufmann, 1990. pp. 35-44.
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V. Gullapalli. Modeling cortical area Ta using stochastic real-valued (SR} unite In
D.S. Touretzky, J.L. Elman, T.J. Sejnowski and (O FE. Hinton, ediors. Procof.
mngs of the 1390 Connectionist Models Summer Schnol San Matea, A Mirgan
Kaufmann. 1990.

K. S Sutton and A. (. Barto. Time-derivative models of Pavlowvian remforeement
In Learming and Computational Neuroscience. M. Gabriel and J Noore, editors,
The MIT Press. Cambridge. MA. 1990, pp. 497-337.

A G. Barto. Some learning tasks from a control perspective. In L Nadel and ) Stein.
editors. 1990 Lectures im Complexr Systems. Addison-Wesley. 1991 pp. 195.223

R S Sutten. A. G. Barte and R. J. Willlams. Reinforcement learning 1= direct
adaptive optimal control. Praceedings of the 1991 American Contral Conference,
June 26-28. Boston, MA. pp. 2143-2146.

\". Gullapalli. Dynamic systems control via associative reinfarcement learning. In B
Soucek. editor, Dynamic. Genetic, and Chaotic Programmang: The Swuzth Gener-
atron. New York. NY: John Wiley & Sons. 1992.

A. G. Barto. Reinforcement learning and adaptive critic methods. In Handbook of
Intelligent Control. D.A. White and D.A. Sofge. editors. New York: Van Nastrand
Reinhold, 1992, pp. 169-491.

Technical reports

A G. Barto, S. J Bradtke and S. P. Singh. Real-time learning and control using
asvnchronous dynamic programming. Technical Report 91-57. Computer Science
Dept.. University of Massachusetts, Amherst. August 1991, (Submitted tn Arfr-
ficral Inteclligence Journal)

A.G. Barto and V. Gullapalli. Neural networks and adaptive control. NFB Technical
Report 6. Center for Neuroscience Research on Neuronal Populations and Behav-
ior. Northwestern University, March 1992, "To appear in P. Rudomin, M. A Ar.
bib and F. Cervantes-Perez. editors. Natural and Artificral Intelligence, Research
Notes in Neural Computation, Springer-Verlag (in press).;

R. Yee. Abstraction in control learning. COINS Technical Report 92-16, University
nf Massachusetts, March 1992.

A G Barto. S. J. Bradtke and S. P. Singh. Learning to act using real-time dyvnamic
programming. CMPSCI Technical Report 93-(12. University of Massachnsetts,
January 1993 (Supercedes TR 91-57.) Submitted to A7 Journal
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Graduate students

Jonathan Bachrach
Robert Crites
Vijavkumar Gullapalli
Robert Jacobs
Satinder Singh
Richard Yee

Theses produced:

R. A. Jacobs. Task Decomposition Threugh Competition in a Modular Connection-
ist Architecture. (Ph.D. Thesis) COINS Technical Report 90-44. University of Mas-
sachusetts at Amherst. May 1990.

J. R. Bachrach. Connectionist Modeling and Control of Finite State Environments.
(Ph.D. Thesis) COINS Technical Report 92-6, University of Massachusetts, Amherst.
January 1992.

V. Gullapalli, Reinforcement Learning and its Application to Control. (Ph.D. Thesis)
COINS Technical Report 92-10, University of Massachusetts. Amherst. January 1932

External honors, etc.

Andrew G. Barto became a Senior Fellow of IEEE.

Andrew G. Barto gave an invited plenary address entitled “Learning to Act: A Per-
spective from Control Theory” at the Tenth Annual Meeting of the American
Association for Artificial Intelligence (AAAIL-92) at San Jose, CA, July 15. 1892

Andrew G. Barto gave the invited plenary lecture, entitled “Reinforcement Learning.”
at the 1992 Conference on Learning Theory at the University of Pittsburgh. July
27, 1992.
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